Drought Awareness: Data is Emerging, Design Should Follow

Christopher Damien

by Christopher Damien

It’s hardly news that California is in the throes of a serious drought. California’s final Department of Water Resources snow survey of 2014, published on May 1, reported that the statewide snowpack’s water content is at 18 percent of average for the date. Such arid circumstances were anticipated after an April 1 snow survey found water content was only at 32 percent. This is troubling news considering that California receives about a third of its hydration from these water-containing snowpacks.(1)

Water agencies have experimented with and implemented several methods for budgeting water. “Allocation pricing,” for example, is a method of budgeting water in terms of how much users ought to be using; based on geography and demographics, a user is allocated a certain amount of water. With overconsumption rates increase dramatically. With these methods, water agencies are attempting to fiscally wake consumers to the severity of our current situation. However, consumers in the Bay Area have not yet cut water use by the 10-20% requested by San Francisco Public Utilities Commission. Rationing this resource will certainly prove to be a challenge for the Californian’s varied degrees of thirst.

Human behavior will be the most difficult barrier to water security. As accurate monitoring increases our awareness of the impacts of overconsumption, the design of our built systems must follow suit. This necessary shift will only result from a clear evaluation of the various water realities throughout California.

Can design not only make systems more efficient, but make consumers more aware of how precious this resource is becoming?

Design to adequately address water scarcity must be rooted in data. The first step will be to raise awareness of where water is coming from, then reevaluate the practicality of these distances.

Where is your water coming from?


Diagram of the Hetch Hetchy Water System, courtesy of SPUR

San Francisco receives 80% of its water from the Hetch Hetchy Project, requiring transport of over 150 miles. This transport of water over a large distance is a peculiar characteristic of urban centers throughout the American West, one that is largely an artifact of yester year’s inclination for grand, if not hubristic, engineering.

What are the opportunities other than major engineering feats of piping water from distant climes?

This is the design challenge posed by Peter and Hadley Arnold of the Arid Lands Institute, who recently unveiled their program for design that substantially accounts for both geographic aridity and actual local rainfall in Southern California’s San Fernando Valley Basin, entitled “The Case for Divining LA.” In it, they exhibit a model of storm water runoff based on 30-year precipitation data, visualizing the path of runoff and opportunity for harvest and use. This high resolution geo-spatial model is part of a larger effort to visualize Southern California’s water reality: “520,000 acre-feet of unused stormwater is sent as discharge to the Pacific Ocean each year, enough to support 500,000 families at current usage rates with no conservation measures in place.”(2)

Their model includes surface runoff as a result of precipitation, surface permeability, and soil types and conditions. This model led the Arid Lands Institute to conclude that “urban stormwater and recycled municipal supplies combined with increased efficiency could meet up to 82 percent of Los Angeles’ water demand,” 82% that would not need to be piped via the 400 mile Los Angeles Aqueduct.


Geo-Spatial Model of Los Angeles Water Sources, courtesy of Arid Lands Institute

Efforts like this will be needed across geographies and municipalities throughout California and throughout the heating world as drought and aridity become more prevalent characteristics of life. These modeling efforts offer awareness of real resource surplus and scarcity, allowing design solutions to be based in reliable data.

In our own work, MKThink employs evidence-based design practices and seeks to enable user behavior through design rather than force it. We ask, how might design offer aesthetic awareness of drought? How might design offer awareness of distant geographies impacted by exorbitant consumption? How might we avail ourselves of the missed opportunities outside our doors?

Real knowledge of a legitimate drought and real knowledge of consumption patterns and sources will hopefully allow people to quench their thirst accordingly and stop watering their lawns; above all, it may finally force people to take responsibility for where they decide to put down roots.

(1) California Department of Water Resources (DWR), “Year’s Final Snow Survey Comes up Dry: 3-Year Drought Retains Grip as Summer Approaches”
(2) Arnold, Hadley and Peter, “Pivot: Reconceiving Water Scarcity as Design Opportunity: Mapping a More Absorbent Landscape,” BOOM Fall 2013, pgs. 95-101

Navigating the various sources of California’s water: Water Education Foundation.
High-Resoution Geo-Spatial Model of SoCal’s Water Reality: by Arid Lands Institute.